Monday, May 22, 2017

Chronology and The Big Bang

Big Bang and Chronology of the universe

The prevailing model for the evolution of the Universe is the Big Bang theory. The Big Bang model states that the earliest state of the Universe was extremely hot and dense and that it subsequently expanded. The model is based on general relativity and on simplifying assumptions such as homogeneity and iso tropy of space. A version of the model with a cosmological constant (Lambda) and cold dark matter, known as the Lambda-CDM model, is the simplest model that provides a reasonably good account of various observations about the Universe. The Big Bang model accounts for observations such as the correlation of distance and redshift of galaxies, the ratio of the number of hydrogen to helium atoms, and the microwave radiation background.



In this diagram, time passes from left to right, so at any given time, the Universe is represented by a disk-shaped "slice" of the diagram. 

The initial hot, dense state is called the Planck epoch, a brief period extending from time zero to one Planck time unit of approximately 10−43 seconds. During the Planck epoch, all types of matter and all types of energy were concentrated into a dense state, where gravitation is believed to have been as strong as the other fundamental forces, and all the forces may have been unified. Since the Planck epoch, the Universe has been expanding to its present form, possibly with a very brief period of cosmic inflation which caused the Universe to reach a much larger size in less than 10−32 seconds.


After the Planck epoch and inflation came the quark, hadron, and lepton epochs. Together, these epochs encompassed less than 10 seconds of time following the Big Bang. The observed abundance of the elements can be explained by combining the overall expansion of space with nuclear and atomic physics. As the Universe expands, the energy density of electromagnetic radiation decreases more quickly than does that of matter because the energy of a photon decreases with its wavelength. As the Universe expanded and cooled, elementary particles associated stably into ever larger combinations. Thus, in the early part of the matter-dominated era, stable protons and neutrons formed, which then formed atomic nuclei through nuclear reactions. This process, known as Big Bang nucleosynthesis, led to the present abundances of lighter nuclei, particularly hydrogen, deuterium, and helium. Big Bang nucleosynthesis ended about 20 minutes after the Big Bang, when the Universe had cooled enough so that nuclear fusion could no longer occur. At this stage, matter in the Universe was mainly a hot, dense plasma of negatively charged electrons, neutral neutrinos and positive nuclei. This era, called the photon epoch, lasted about 380 thousand years.


Eventually, at a time known as recombination, electrons and nuclei formed stable atoms, which are transparent to most wavelengths of radiation. With photons decoupled from matter, the Universe entered the matter-dominated era. Light from this era could travel freely, and it can still be seen in the Universe as the cosmic microwave background (CMB). After around 100 million years, the first stars formed; these were likely very massive, luminous, and responsible for the reionization of the Universe. Having no elements heavier than lithium, these stars also produced the first heavy elements through stellar nucleosynthesis.[35] The Universe also contains a mysterious energy called dark energy, the density of which does not change over time. After about 9.8 billion years, the Universe had expanded sufficiently so that the density of matter was less than the density of dark energy, marking the beginning of the present dark-energy-dominated era.[36] In this era, the expansion of the Universe is accelerating due to dark energy. you can visit our other site.

No comments:

Post a Comment